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This is the supplementary for Cost-effectively Identifying Causal Effects When Only Response Variable is Observable.
In Appendix A, we provide a detailed preliminary. Some notations in the proof are not mentioned in the main paper. We
illustrate them here. Interventional-faithfulness, which is an important assumption to our method, is given in Appendix B.
Appendix C shows the method of estimating the expectation of causal effects by Monte Carlo Methods. All the proofs for
the main paper are provided in Appendix D. Appendix E reports some details of our experiments.

Appendix A: Preliminary
In this part, we provide a detailed illustration of the concepts and notations in the main paper and supplementary.

Let G = (V,E) be a graph consisting the vertices V and edges E ⊆ V ×V. In our context, the vertices represent the
features X1, X2, · · · , Xp and the response variable Y . A directed edge is like Vi → Vj or Vj ← Vi with an arrow in the
edge, while an undirected edge is like Vj − Vj . A directed (undirected) graph is a graph whose edges are all directed
(undirected). A partially directed graph may contain both directed and undirected edges. If we remove all the arrowheads
from a graph G, we obtain the skeleton of the graph G. For two graph G1 = (V1,E1) and G2 = (V2,E2), G1 is a
subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2. The subgraph induced by V′ in G comprises of the vertices in V′ and all the
edges between the vertices in V′. We denote it by G[V′].

For any two vertices Vi and Vj in graph G = (V,E), if there is an edge between them, they are adjacent. The adjacency
set of a vertice Vi contains all the vertices adjacent to Vi. We denote it by adji(G). If Vi → Vj (Vj → Vi), Vi is a
parent (child) of Vj . A directed path from Vi to Vj represents there exists a set of vertices {Vi1 , Vi2 , · · · , Vik} ⊂ V
such that Vi → Vi1 , Vi1 → Vi2 , · · · , Vik → Vj . The partially directed path allows for the undirected edge in the set of
vertices. If there is a directed path from Vi to Vj (from Vj to Vi), then Vi is an ancestor (descendant). Every vertice is
an ancestor (descendant) of itself. We denote the parents (children, ancestors, descendants) set of vertice Vi in graph G
by Pai[G],Chdi[G],Anci[G],Desi[G]. Sometimes, we will simplify them to Pai,Chdi,Anci,Desi. In a partially directed
graph G, siblings of vertice Vi is the vertice set in which each has an undirected edge with Vi. We denote the siblings of
vertice Vi by Sibi[G] or Sibi, and denote the undirected edges set of Vi by ESibi .

In a graph, there is a directed (partially) cycle if there is a directed (partially) path starts and ends in the same point. It
is worthy to note that there exists at least one directed edge in the partially cycle. If there is no such a directed cycle, the
graph is acyclic. For any triples of vertices in a graph such that Vi → Vk ← Vj and Vi is not adjacent to Vj , they constitute a
v-structure, in which Vk is a collider. The conditional independence can be identified by d-separation. Vi and Vj are not
d-separated by a vertice set V ′ in a path L if and only if for every collider in the path, at least one of its descendant belongs
to V ′ and V ′ has no non-colliders in the path L. For two variables set V1 and V2, if every path from V1 to V2 is d-separated
by a variable set V ′, V1 is conditional independent of V2 given V ′. A (partial) causal graph is a (partially) directed acyclic
graph, which is DAG(PDAG) for short. The directed edge reflects a causal relation.

If two DAGs share the same conditional independence, they are Markov equivalent. Two DAGs are Markov equivalent if
and only if they share the same skeleton and same v-structures. The Markov equivalence class (MEC) is a set of DAG in
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which each graph is Markov equivalent to others. An essential graph is a partially directed acyclic graph, and the edge is
Vi → Vj if and only if in each DAG of MEC the edge is Vi → Vj . A partially directed graph is a chain graph if there is no
partially cycle (Lauritzen & Richardson, 2002). As shown in (Andersson et al., 1997), the essential graph is a chain graph.
After deleting the directed edges in a chain graph, we divide it into a few chain components whose variables are connected
in an undirected graph.

In this paper, capital and lower-case letters denote random variables and values respectively. In Pearl’s do-calculus framework
(Pearl, 2009), do(X = x) represents intervening on variable X with value x. The causal effect of Xi on Y is denoted by
P (Y |do(Xi)). We would claim Xi has a causal effect on Y if Xi is an ancestor of Y because an intervention on X will
influence Y . Otherwise, we say Xi has no causal effect on Y .

A set of variables Z is called back-door admissible set for (Xi, Y ) in a DAG G if no variable in Z is a descendant of Xi and
Z blocks every path between Xi and Y that contains an arrow into Xi. By definition, Pai is one of the back-door admissible
sets for (Xi, Y ). With back-door admissible set Z for (Xi, Y ), we have

P
(
Y |do(Xi = xi)

)
=

∫
Z

P (Z)P (Y |Xi = xi,Z) dZ. (1)

Appendix B: Interventional-faithfulness Assumption
In this section, we give a detailed illustration about the interventional-faithfulness assumption. It is important to our method.
We first define minimal parental back-door admissible set, followed by the assumption.

Definition 1 (Minimal Parental Back-door Admissible Set (MPS)). M is called a minimal parental back-door admissible
set for (Xi, Y ) in a DAG G if (1). all variables in M are parents of Xi, (2). M is a back-door admissible set for (Xi, Y ),
(3). no variable in M is conditional independent of Y given Xi and the other variables in M.

Assumption 1 (Interventional-faithfulness). For two Markov equivalent DAGs with the same observational distribution, if
Xi ∈ AncY and minimal parental back-door admissible sets for (Xi, Y ) are different in the two DAGs, then P

(
Y |do(Xi =

x)
)

are different in the two DAGs.

Now, we give an example to intuitively illustrate it. See Fig 1, the causal effect of X = x on Y is
∫
Z
P (Z)P (Y |X,Z) dZ

in Structure 1, while it is
∫
T
P (T )P (Y |X = x, T ) dT in Structure 2. And they share different minimal parental back-door

admissible set {Z} and {T} for (X,Y ). The interventional-faithfulness assumes that given a common joint observational
distribution, the causal effect

∫
Z
P (Z)P (Y |X,Z) dZ is not equivalent to

∫
T
P (T )P (Y |X = x, T ) dT , i.e. it is impossible

that P (Y |do(Xi)) =
∫
Z
P (Z)P (Y |X,Z) dZ =

∫
T
P (T )P (Y |X = x, T ) dT . The reason we introduce the concept of

minimal parental back-door admissible set in our assumption is to differentiate our assumption with “The causal effect
implies the only causal graph”. For example, the causal effects of X on Y are the same in Structure 1 and 3. But the causal
graphs are evidently different. We rule out this situation by introducing minimal parental back-door admissible sets. The
assumptions are towards only the causal graphs with different minimal parental back-door admissible sets.

Z
YX

PT
(a) Structure 1

Z
YX

PT
(b) Structure 2

Z
YX

PT
(c) Structure 3

Figure 1. We assume the causal effects of X on Y are different in the first two structures under a common joint distribution, while those
in Structure 1 and 3 are equivalent.

Then, we give a brief analysis to show intervention-faithfulness is hardly violated under the faithfulness assumption.

Analysis. If intervention-faithfulness is violated, that is, for two DAGs G and H with different MPS V1 and V2 for (Xi, Y ),
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their causal effects are the same. It holds

PG(Y |do(X = x)) =

∫
P (V1)P (Y |X = x,V1) dV1, (2)

PH(Y |do(X = x)) =

∫
P (V2)P (Y |X = x,V2) dV2. (3)

We find A and B such that V1 ∪ A = V2 ∪ B, A ⊆ V2,B ⊆ V1,A ∩ B = ∅. If the causal effects are the same, that is∫
P (V1)P (Y |X = x,V1,A)P (A|X = x,V1) dV1 dA

=

∫
P (V2)P (Y |X = x,V2,B)P (B|X = x,V2) dV2 dB.

We thus have

0 =

∫ [
P (V1)P (A|X = x,V1)− P (V2)P (Y |X = x,V2,B)P (B|X = x,V2)

]
P (Y |X = x,V1,A) dV1 dA

=

∫
f(A,V1)P (Y |X = x,V1,A) dV1 dA,∀x,

where f(A,V1) = P (V1)P (A|X = x,V1)− P (V2)P (Y |X = x,V2,B)P (B|X = x,V2). Here it is not hard to see∫
f(A,V1) dV1 dA = 0.

We first prove that f(A,V1) 6≡ 0. If f(A,V1) ≡ 0, that means

P (V1)P (A|X = x,V1) = P (V2)P (B|X = x,V2)

P (X = x|V1) = P (X = x|V2).

Without loss of generality, we assume A 6= ∅. We conclude

P (X = x|V1) = P (X = x|{V2\A},A) = P (X = x|{V2\A}).

The second equation holds because A ∩ V1 = ∅. Hence X ⊥ A|{V2\A}. It contradicts the faithfulness assumption,
because there exists edges between X and variables in A.

Hence, we know that f(A,V1) 6≡ 0. We notice if the interventional-faithfulness is violated, that means given any x, the
weighted sum of a series of distribution of Y should happen to equal to zero, where the sum of the weight is zero, and the
weight is not a function of Y as well as not always zero. It is reasonable to think such a situation hardly happens.

Appendix C: The Expectation Estimation of Causal Effects
In this part, we introduce our method for estimating the expectation of causal effects in the main paper. The equation is

E
(
Y |do(Xi = xi)

)
=

∫
Y

Y

∫
Mj

P (Mj)P (Y |Xi = xi,Mj) dMj dY, (4)

=

∫
Mj

P (Mj)E(Y |Xi = xi,Mj) dMj . (5)

The estimation in (4) is prone to suffer the curse of dimensionality, because it gets harder to estimate P (Y |Xi = xi,Mj)
as the growth of the dimension of Mj . Hence we estimate it avoiding the high-dimensional estimation by Monte Carlo
Methods. We divide the estimation of (5) into two steps. First, we train a regression model f̂ from Xi and Mj to Y based
on the observational data in order to predict the expectation E(Y |Xi = xi,Mj). The predicted value for Xi = xi and
Mj = m0 is f̂(xi,m0). Then, we sample m ∼ P (Mj) with replacement from the observational data. With a sample mk
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and the intervention value xi, we estimate E(Y |X = xi,mk) with the trained regression model. The result is denoted by
Ŷk. Repeat the process of sampling and estimation for many times and get Ŷ1, Ŷ2, · · · , Ŷn. Then,

ÊGj

(
Y |do(X = xi)

)
=

1

n

n∑
k=1

Ŷk. (6)

Here we give an example to provide reasonableness for the regression step in estimating the expectation E(Y |Xi = xi,Mj).
Assume a linear relation Y = β0X+βTMj + ε, ε ∼ (0, σ2) between the variables, where Mj is the minimal parental back-
door admissible set. It holds that E(Y |X = xi,m0) = β0xi + βTm0. Our predicted value is f̂(xi,m0) = β̂0xi + β̂Tm0.
Due to the property of linear model, β̂0 and β̂ are all unbiased estimate of β0 and β. Hence, f̂(xi,m0) is an unbiased
estimate of E(Y |X = xi,m0). It seems reasonable to use the regression result to estimate the expectation given xi and m0.

Appendix D: Theoretical Guarantee
In this part we provide the proofs in the main paper. In Part D.1, we present some detailed proofs about the proposed method,
which is in Section 3 in the main paper. In Part D.2, the related proofs about the causal effect identifiability are given. In
Part D.3, we give the proof about the intervention cost analysis.

D.1: proof about the proposed method

Theorem 1. The causal effect of each variable on the response variable Y is identifiable if and only if all ancestor edges
(ancestor causal structure) are identified.

Proof. The adequacy and necessity are proved, respectively.
⇒. We prove it by reduction to absurdity. Without loss of generality, we assume an ancestor edge Xi → Xj has not been
identified. According to the definition of ancestor edges, after deleting the edge between Xi and Xj , there exists at least one
variable from Xi, Xj having a directed path to Y . If both have directed paths to Y (the edge between Xi and Xj is not in
the path), whether Xi → Xj or Xi ← Xj determines different minimal parental back-door variable sets for (Xi, Y ) in (1),
which takes a different causal effect of Xi on Y in general. If only one variable has a directed path to Y while the other
one is not located in the path, we assume it is Xi → · · · → Y . If Xi → Xj , Xj has no causal effect to Y . If Xi ← Xj ,
intervention on Xj will take a change to Y . Hence, we cannot determine the causal effect of Xj on Y without the direction
of the Xi −Xj , which contradicts the condition.

⇐. If the ancestors edges are all identified, the set AncY is determined. For any X ∈ V \AncY , it holds E(Y |do(X =
x)) = E(Y ). For X ∈ AncY , because all edges of X are identified, we can determine the back-door variables and calculate
the causal effect by back-door criterion. Hence, the causal effect of each variable on Y is identifiable.

Proposition 2. In a chain component C of chain graph G, if the response variable Y 6∈ C and there does not exist a
directed path from v to Y for any variable v ∈ C in G, then there is no directed path from C to Y in the causal graph.

Proof. If such a path v → · · · → Y exists in the causal graph, then v → V1 → · · · → Vk → Y and some edges
Vi → Vi+t ∈ Gτ , Vi−1 → Vi 6∈ Gτ and Vi+t → Vi+t+1 6∈ Gτ , where Gτ is a chain component. According to Lemma 10
by He & Geng (2008), if a variable S outside a chain component G′ has a directed edge to X in G′, then there is a directed
edge from S to all the variables in G′. Therefore, the path can be shorten to v → V1 → Vi−1 → Vi+t → · · · → Vk → Y .
Repeat it and we can get a directed path from a variable in C to Y that doesn’t contain any edges in other chain components.
It contradicts the condition.

D.2 proof about causal effect identifiability

Lemma 1. Under Assumption 1 and our intervention variable selection strategy, if X is intervened in chain component C,
Y 6∈ C, undirected edges exist between AncY [C̈], then all the undirected edges between X and the “next” variable located
in the shortest undirected path P from X to any variable Z ∈ AncY [C̈] can be identified by the intervention, the “next”
variable is the one adjacent to X in P .
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Proof. For any other variable Z(6= X) in AncY [C̈], we assume the shortest undirected path between X and Z is X −Va1 −
Va2 − · · · − Vak − Z. We prove the causal relation between X and Va1 can be identified by intervening on X because
the different orientations of X − Va1 lead to different minimal parental back-door admissible set for X,Y , which lead to
different causal effects by interventional-faithfulness assumption.

If X → Va1 , Va1 cannot be in the minimal parental back-door admissible set MX for (X,Y ).

While if Va1 → X , Va1 must be in MX . Otherwise, there exists a T ⊆ SibX
⋃

PaX , such that Va1 ⊥ Y |{X,T}. With
Z ∈ AncY [C̈], we first prove {X,PaX} cannot d-separate Va1 and Y in the pathX−Va1−Va2−· · ·−Vak−Z → · · · → Y :

At first, we notice {X,PaX} cannot d-separate the shortest path from Va1 to Z. To achieve d-separation Va1 ⊥ Y |{X,PaX},
at least one variable V ′ should d-separate the directed path from Z to Y . In the condition that V ′ ∈ PaX , if V ′ 6∈ C, it holds
V ′ → Z (Lemma 10 of He & Geng (2008)), hence the d-separation is impossible. If V ′ ∈ C, if the d-separation holds, all
the directed path from Z to Y will go through such V ′, which contradicts the definition of AncY [C̈], because Z ∈ AncY [C̈]
so that Z should have a directed path to Y in which no variables in C exist. Hence the variables in PAX cannot d-separate
the path from Z to Y ;

We also notice X is evidently not in the directed path from Z to Y , which leads to it cannot d-separate the path from Z to Y .
We then get the conclusion {X,PaX} cannot d-separate the path from Va1 to Y .

Therefore, if Va1 ⊥ Y |{X,T}, there is at least one Vt ∈ SibX such that Va1 is d-separated with Y by Vt in that path. We
have Vt ∈ {Va2 , · · · , Vak}. There is an undirected path X − Vt − · · · − Z, which contradicts the shortest path assumption.
Therefore Va1 must be in MX . By interventional-faithfulness assumption, the causal effects when X → Va1 and X ← Va1
are different, so that we can identify this edge with the distribution of Y under intervention on X .

D.3 proof about intervention cost analysis

In this part, we provide the related proofs for the interventional cost analysis section in the main paper. We assume plenty of
observational data. According to them we can obtain the correct essential graph. Based on the essential graph, we make
experiments and analyze the expected number of interventions to identify the ancestor causal structure, i.e., make causal
effect identification. The number of interventions do not include of that obtaining the observational data.

Proposition 4. For a line skeleton with p + 1 ≥ 4 variables X1, · · · , Xp, Y , if all the causal relations and positions of
variables X1, · · · , Xp, Y are totally random, then the expected number of interventions to make causal effect identification
is 19

8 −
39

8p+8 + 6
p+1 (

1
2 )
p < 3.

Proof. At first, we consider Y is at one end of a line with m variables and denote the intervention times in such line
by #s(m). For the graph Y − X1 − X2 − · · · , there are three conditions Y ← X1 − · · · , Y → X1 ← X2 − · · · ,
Y → X1 → X2−· · · with possibilities 1

2 , 1
4 , 1

4 . For the second condition, they form a v-structure so that we can identify no
variables from X1 · · · , Xm−1 are the ancestors of Y by observational data. Hence the number of interventions is zero. For
others condition, we will intervene on X1 to identify the edges between X1 and Y . We keep intervening until identifying all
ancestor edges. We have

E(#s(m)) = 0× 1

4
+ 1× 1

4
+ (1 + E(#s(m− 1)))× 1

2
.

Recursively, we can conclude that

E(#s(m)) =
2

3
− (

1

2
)m−1,m ≥ 2.

When we analyze the number of interventions in a random line skeleton, the randomness is generated from three parts. The
first one is the random positions of Y . The second one is the random causal edges in the real structure. The last one is the
intervention variable selection. Y is located in each position of the line skeleton with the same possibility. Without loss of
generality, we assume the skeleton is X1−Xi−1− Y −Xi− · · · −Xp, 3 ≤ i ≤ p− 1 (The condition that i = 1, 2, p, p+1
can be analyzed similarly, we thus omit them here). We first consider the edges Xi−1 − Y −Xi. In the real causal graph,
there are four conditions Xi−1 ← Y → Xi, Xi−1 → Y ← Xi, Xi−1 → Y → Xi, Xi−1 ← Y ← Xi, each of them is with
the possibility 1

4 .
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Take Xi−1 → Y → Xi as an example, if the edges between Xi and Xi+1 is Xi ← Xi+1, the edge between Y and Xi

can be identified by observational data because Y,Xi, Xi+1 form a v-structure, so that we do not need to do interventions
to identify Xi − Xi+1. And the number of interventions to identify Xi−1 − Y is 1. When Xi → Xi+1, we select the
intervention variable fromXi−1 andXi with the same possibility 1

2 . If we intervene onXi−1, bothXi−1 → Y and Y → Xi

can be identified because of Meek rules, that is we take one experiment to identify Xi → Y → Xi+1. But if we intervene on
Xi, we have to take another intervention on Xi−1 to identify the edge Xi−1 − Y , that is we take two experiments to identify
Xi → Y → Xi+1. Because the variables after Xi+1 can not be ancestors of Y , we do not identify their causal relation. The
expected number of interventions to identify the causal effect of the variables in X1 − · · · −Xi−1 on Y is E(#s(i− 1)).

Hence, when Y is in the i-th position of the line and Xi−1 → Y → Xi, the expected number of experiments to identify the
causal effect of each variable on Y is

EXi−1→Y→Xi
(#(i)) =

1

2
× 1 +

1

2
× (

1

2
× 1 +

1

2
× 2) + E(#s(i− 1))

=
5

4
+ E(#s(i− 1)).

Similarly, we have the expected number of experiments when Xi−1 ← Y → Xi, Xi−1 → Y ← Xi, Xi−1 ← Y ← Xi. In
total, we have

E(#E(p+ 1)) =
1

p+ 1

p+1∑
i=1

1

4

(
EXi−1→Y→Xi

(#(i)) + EXi−1→Y←Xi
(#(i))

+ EXi−1←Y→Xi(#(i)) + EXi−1←Y←Xi(#(i))
)

=
19

8
− 39

8p+ 8
+

6

p+ 1
(
1

2
)p, p ≥ 3,

i is the position of Y in the line skeleton. The proof completes.

By Eberhardt (2007), the expected number of interventions have been studied in depth, where they take singleton hard
interventions and observe whole variables, as well as discover the edges by whether the distribution of some variable takes a
change under an intervention on other variables. In the following, instead of repeating the setting and approach above, we
will say “by approach of Eberhardt (2007)” for short. We compare the intervention cost by our approach with them. But our
approach is only allowed to have the interventional data of response variable. Because we focus on making causal effect
identification, i.e. discovering ancestor causal structure, while Eberhardt (2007) identifies the whole causal structure, we
first give following lemmas to conclude the properties of their approach when focusing on ancestor causal structure.
Definition 2 (Causal order). Given a set of variables {X1, · · · , Xp, Y } and their causal graph, its causal order is an order
that any variable is not the ancestor of any former variables in the causal order.
Lemma 2 (Eberhardt (2007)). Given a set of p+ 1 ≥ 2 causally sufficient variables, the worst case expected number of
experiments necessary and sufficient to discover the causal structure is 2

3 (p+ 1)− 1
3 experiments if only one variable can

be subject to a structural intervention per experiment.

The worst case is when the causal graph is complete. That is, for a complete causal graph, the expected number of
interventions is 2

3 (p+ 1)− 1
3 . Then, we conclude Lemma 3.

Lemma 3. For a complete causal graph G with variables X1, X2 · · · , Xp, Y , in which Y is the descendant of all the other
variables, the expected number of interventions to identify the ancestor causal structure is 2

3 (p+ 1)− 1
3 by the approach

of Eberhardt (2007), i.e. taking singleton hard interventions and observing the whole variables ,. The ratio of the expected
number to the variable number converges to 2

3 when p→∞.

In this condition, all the edges in graph G are ancestor edges. We thus have to identify all of them. Hence the expected
number is same as Lemma 2. Next, we will consider the expected number of interventions to identify the ancestor causal
structure, i.e. make causal effect identification, in general complete causal graph.
Lemma 4. The expected number of interventions T (p) to identify the ancestor causal structure of a random complete
causal graph composed of X1, · · · , Xp, Y by the approach of Eberhardt (2007), i.e. taking singleton hard interventions and
observing the whole variables, is bounded by p+1

3 + 2
3

1
p+1 ≤ T (p) ≤

p+1
3 + 5

3
1
p+1 +

p+2
p+1 ln

p+1
2 . The ratio of the expected

number to the variable number converges to 1
3 when p→∞.
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Proof. In a complete graph, there is an exact causal order for p+1 variables, in which Y is located in each position with the
same possibility. Without loss of generality, we assume the causal order is X1, X2, · · · , Xi−1, Y,Xi, · · · , Xp. We divide
the graph into two parts. One is the subgraph induced by Y,Xj , 1 ≤ j ≤ i − 1. The expected number of interventions
is S(i) = 2

3 i −
1
3 , i ≥ 2 by Lemma 3 because Y is the descendant of all other variables X1, · · · , Xi−1. The other is the

subgraph induced by Y,Xj , j ≥ i.

First, we prove for a complete causal graph with m variables in which Y is not descendants of any variables, the expected
number of interventions is 1 +

∑m
i=3

1
i ,m ≥ 3. We denote it by L(m). We assume the variables are X1, · · · , Xm−1, Y (It

is different from the notation in the beginning). And we assume the causal order is X0, X1, · · · , Xm−1, where X0 is Y .
Because each variable is equally likely to be subject to an intervention in the first experiment. We denote the intervention
variable by Xj . It holds

L(m) = 1 +
1

m

m−1∑
j=0

L(j),m ≥ 2,

where L(0) = 0, L(1) = 0, L(2) = 1. The first term 1 is an intervention cost on Xj . By the interventional data of the full
variables, we can see Xk → Xj , 0 ≤ k < j and Xk ← Xj , k > j. Hence we identify that Xk, k ≥ j are the descendants
of Xj , X0 is an ancestor of Xj . We thus know all of Xk, k ≥ j are descendants of X0 and their undirected edges are not
ancestor edges. The remaining undirected edges to be oriented are just that between X0, X1, · · · , Xj−1. The expected
number of interventions to discover these is L(j). By transformations,

m−1∑
j=0

[L(m)− L(j)] = m.

We denote L(m)− L(j) =
∑m
i=j+1 bi. It holds

m∑
i=1

ibi = m,

Similarly, we have

m+1∑
i=1

ibi = m+ 1,

Calculate the difference between the two equations above. It concludes

bi =
1

i
, i ≥ 3,

L(m) = 1 +

m∑
i=3

1

i
.

For the complete random causal graph with variables X1, X2, · · · , Xp, Y . We denote the expected number of interventions
to discover the ancestor causal structure by T (p). It should be less than the sum of expected number S(i) to identify the
subgraph induced by X1, X2, · · · , Xi−1, Y and the expected number L(p + 2 − i) to identify the subgraph induced by
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Y,Xi, Xi+1, · · · , Xp. Hence we have

T (p) ≤ 1

p+ 1

p+1∑
i=1

(S(i) + L(p+ 2− i))

=
1

p+ 1

p+1∑
i=1

S(i) +
1

p+ 1

p+1∑
i=1

L(i)

= (
p+ 1

3
+

2

3

1

p+ 1
) + (

1

p+ 1
+
p+ 2

p+ 1

p+1∑
j=3

1

j
)

≤ p+ 1

3
+

5

3

1

p+ 1
+
p+ 2

p+ 1

∫ p+1

i=2

1

j
dj

=
p+ 1

3
+

5

3

1

p+ 1
+
p+ 2

p+ 1
ln
p+ 1

2
.

And then, it is evident that

T (p) ≥ 1

p+ 1

p+1∑
i=1

S(i)

=
p+ 1

3
+

2

3

1

p+ 1
.

We then get the desired conclusion.

Next, we provide the expected number of interventions by our approach. We emphasize only the interventional data of
response variable is observable in our approach.

Lemma 5. For a complete causal graph G with variables X1, X2 · · · , Xp, Y, p ≥ 3, in which Y is the descendant of all
other variables. Given the essential graph EssG (the essential graph is the skeleton when the causal graph is complete),
the expected number of interventions F (p) to discover the ancestor causal structure by our approach is bounded by
2
3 (p + 1) − 1 ≤ F (p) ≤ 2

3 (p + 1) − 2
3 + ln p

2 , in the setting that only the interventional data of response variable is
observable.

Proof. The complete graph has an exact causal order. Without loss of generality, we assume the order is X1, X2, · · · , Xp, Y .
According to the condition, each variable from X1, · · · , Xp is equally likely to be subject to an intervention in the first
experiment.

We consider an intervention on Xi. We can identify the edge Xi → Y . Besides, if Xj is such that Xj → Xi, Xj → Y , the
two edges can be identified. It is because these back-door paths cannot be d-separated by any other variables, the variable
Xj must exist in all minimal parental back-door admissible sets of Xi consistent to the real causal structure. Hence we
know some edges of Xj , j ≤ i can be identified by intervention on Xi, while no edges of Xj , j > i can be identified.
Evidently all variables belong to a common chain component. In our intervention variable selection criterion, we will select
the variable with the maximum siblings. Hence in the next intervention we will select a variable from Xi+1, · · · , Xp with
the same possibility. We repeat the process until intervening on Xp, because no edges of Xp can be identified unless we
intervene on it and it has the maximum siblings. This is the first stage ending with intervening on Xp. The expected number
of interventions in the first stage is denoted by K(p). K(1) = 1. We have

K(p) = 1 +
1

p

p∑
i=1

K(p− i)

= 1 +
1

p

p−1∑
i=0

K(i).
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Similar to the derivation process in Lemma 4, we conclude that

K(p) = 1 +

p∑
i=3

1

i
.

After we intervene on Xp, we have identified all the edges Xi → Y, 1 ≤ i ≤ p and Xi → Xp, i < p. Hence the remaining
undirected edges are a subset of edges between X1, · · · , Xp. Then we consider the expected number of interventions to
identify the causal structure between X1, X2, · · · , Xp. In the first stage, it is possible that we have intervened on some
variables from X1, · · · , Xp−1. Here we just consider the upper bound of intervention cost, that is we consider no edges
between X1, · · · , Xp−1 have been identified. In this condition, when we intervene on some variable Xk, all the other
variables from X1, · · · , Xp−1 are the “next” variable in the shortest path to Y . By Lemma 1, the edges between Xk and Xm

can be identified for all 1 ≤ m ≤ p− 1,m 6= k. Hence in this condition identifying the causal edges from the interventional
data of Y by our approach is equivalent to that from the interventional data of full variables in Eberhardt (2007). The
expected number S(i − 1) of interventions to discover the subgraph with i − 1 variables is 2

3 (i − 1) − 1
3 , as shown in

Lemma 2.

We denote the expected number of interventions to identify the ancestor causal structure in the complete graph with
p + 1 variables in which Y is the descendant of all other variables by F (p). According to the analysis above, the total
intervention process is divided into two stages. The first one is we intervene until intervening on Xp. The expected number
of interventions is K(p). The other is we identify the causal structure between X1, · · · , Xp−1. Hence we have

F (p) ≤ K(p) + S(p− 1), p ≥ 3

≤ 1 +

p∑
i=3

1

i
+

2

3
(p− 1)− 1

3
, p ≥ 3

≤ 2

3
p+ ln

p

2
, p ≥ 3.

We thus obtain an upper bound for the expected number of interventions to identify the ancestor causal structure. Then, we
present a lower bound. For the skeleton Ess of the complete causal graph, we orient all the edges Xi → Y, 1 ≤ i ≤ p and
get a new PDAG H . It is evident that the expected number of interventions to identify the ancestor causal structure based on
H is less than that to identify the ancestor causal structure based on the Ess. Because the intervention strategy in these two
graphs are the same, but the former one has less edges to be oriented. Hence a lower bound for F (p) is the expected number
of interventions to identify the ancestor causal structure based on H . We have shown that in this condition identifying the
causal edges from the interventional data of Y by our approach is equivalent to that from the interventional data of full
variables in Eberhardt (2007). Hence the number if 2

3p−
1
3 . It thus holds

2

3
p− 1

3
≤ F (p) ≤ 2

3
p+ ln

p

2
, p ≥ 3,

2

3
− 1

p+ 1
≤ F (p)

p+ 1
≤ 2

3
− 2

3p+ 3
+

1

p+ 1
ln
p

2
, p ≥ 3,

lim
p→∞

F (p)

p+ 1
=

2

3
.

The proof completes.

Proposition 5. For a complete skeleton with p+1 ≥ 4 variables X1, · · · , Xp, Y , if all the causal relations and positions of
variables X1, · · · , Xp, Y are totally random, then the expected number of interventions to make causal effect identification
is less than 5

6 (p+ 1)− 11p−10
6p+6 + ln p

2 .

Proof. In a complete graph, there is an exact causal order for p+1 variables, in which Y is located in each position with the
same possibility. Without loss of generality, we assume the causal order isX1, X2, · · · , Xi, Y,Xi+1, · · · , Xp. Each variable
Xj after Y costs one intervention to identify its edge with Y . (Because when we intervene on Xj , j ≤ i, these edges cannot
be identified. And when we intervene on Xj , j > i, the distribution of Y remains. The edge between other Xk, k > i, k 6= j
and Y is still unidentified.) There thus needs p− i interventions to discover these edges (Xj − Y, j > i). For the complete



Supplementary - Cost-effectively Identifying Causal Effects When Only Response Variable is Observable

subgraph induced by Y and all its ancestors X1, · · · , Xi, Y , we denote the expected number of interventions by F (i).
Hence the expected number C(p) to identify the whole ancestor causal structure meets

C(p) =
1

p+ 1

p∑
i=0

(p− i+ F (i))

=
p

2
+

1

p+ 1
(1 +

3

2
+

p∑
i=3

(F (i))).

Lemma 5 provides the upper bound for the expected number of interventions F (i) to identify the causal structure between
X1, X2, · · · , Xi, Y . Hence

p∑
i=3

F (i) ≤
p∑
i=3

(
2

3
i+

i∑
j=3

1

j
)

≤ 1

3
p2 +

p

3
− 2 +

p∑
j=3

p∑
i=j

1

j

≤ 1

3
p2 +

p

3
− 2 +

p∑
j=3

(p− j + 1)
1

j

≤ 1

3
p2 +

p

3
− 2− (p− 2) + (p+ 1)

p∑
j=3

1

j

≤ 1

3
p2 − 2p

3
+ (p+ 1)

∫ p

j=2

1

j
dj

≤ 1

3
p2 − 2p

3
+ (p+ 1) ln

p

2
.

Hence,

C(p) ≤ p

2
+

5

2(p+ 1)
+

1

p+ 1
(
1

3
p2 − 2p

3
+ (p+ 1) ln

p

2
)

≤ 5

6
(p+ 1)− 11p− 10

6p+ 6
+ ln

p

2
, p ≥ 3.

The proof completes.

Appendix E: Supplement to the experiments
In this part, we give a detailed illustration about the experiments in the main paper. In the example to show the process of
identifying causal structure by various approaches, we generate the non-linear data by the following equations. And when
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we intervene, the intervention value is set to the mean of the intervened variable in the observational data.

X1 = E1, E1 ∼ N(0, 1),

X2 =
3

2
sin(X1) + E2, E2 ∼ U(−0.2, 0.2),

X3 = −2X1 +X2
2 + E3, E3 ∼ N(0, 0.5),

X4 = 2X3 + E4, E4 ∼ U(−0.01, 0.01),
X5 = (X4 + E5)

2, E5 ∼ N(0, 0.3),

X6 = expsin(X5+2X2)+2 +E6, E6 ∼ t(10),
X7 = tan(X4) + E7, E7 ∼ Exp(2),

X8 = (
1

1 +X7
)

2
3 + E8, E8 ∼ χ2(4),

X9 = X2
7 +X8 + E9, E9 ∼ N(0, 0.5),

X10 = 2X6 + E10, E10 ∼ χ2(2),

X11 =
1

X6
+X10 + E11, E11 ∼ Exp(4).

In the application to the real-world data, we apply our approach on a dataset used in causal discovery with both observational
and interventional data (Sachs et al., 2005). It consists of 7466 measurements of the abundance of phosphoproteins and
phospholipids recorded under different experimental conditions in primary human immune system cells. After processing,
5846 measurements remain. The number of samples under each intervention is shown in Table 1. And the causal structure is
presented in Fig. 2.

Table 1. The number of samples under each intervention.

Intervention targets None Akt PKC PIP2 Mek PIP3
#samples 1755 911 723 810 799 848

Figure 2. The ground-truth causal graph of the protein dataset.
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